High-Dimensional Model-Based Optimization Based on Noisy Evaluations of Computer Games
نویسندگان
چکیده
Most publications on surrogate models have focused either on the prediction quality or on the optimization performance. It is still unclear whether the prediction quality is indeed related to the suitability for optimization. Moreover, most of these studies only employ lowdimensional test cases. There are no results for popular surrogate models, such as kriging, for high-dimensional (n > 10) noisy problems. In this paper, we analyze both aspects by comparing different surrogate models on the noisy 22-dimensional car setup optimization problem, based on both, prediction quality and optimization performance. In order not to favor specific properties of the model, we run two conceptually different modern optimization methods on the surrogate models, CMA-ES and BOBYQA. It appears that kriging and random forests are very good modeling techniques with respect to both, prediction quality and suitability for optimization algorithms.
منابع مشابه
Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملA Hybrid Meta-Heuristic Algorithm based on Imperialist Competition Algorithm
The human has always been to find the best in all things. This Perfectionism has led to the creation of optimization methods. The goal of optimization is to determine the variables and find the best acceptable answer Due to the limitations of the problem, So that the objective function is minimum or maximum. One of the ways inaccurate optimization is meta-heuristics so that Inspired by nature, ...
متن کاملComparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems
Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کامل